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problem based on an artificial compressibility flux
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SUMMARY

In this work, we propose and analyse a discontinuous Galerkin (DG) method for the Stokes problem based
on an artificial compressibility numerical flux. A crucial step in the definition of a DG method is the
choice of the numerical fluxes, which affect both the accuracy and the order of convergence of the method.
We propose here to treat the viscous and the inviscid terms separately. The former is discretized using
the well-known BRMPS method. For the latter, the problem is locally modified by adding an artificial
compressibility term of the form (1/c2)(�p/�t) for the sole purpose of interface flux computation. The
flux is obtained as the exact solution of a local Riemann problem. The analysis of the method extends the
well-established strategies for the DG discretization of the Laplacian to the resulting partially coercive
problem. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Discontinuous Galerkin (DG) methods have been gaining an increasing interest in the scientific
computing community since they have proved to be suited for the construction of robust high-order
numerical schemes on arbitrary unstructured and non-conforming grids for a variety of problems.
The application of the DG space discretization to incompressible flows has been recently considered
as well. In a series of papers [1–3], Cockburn et al. introduce and analyse the LDG method
applied to the Stokes, Oseen, and Navier–Stokes equations. The expressions for the numerical
fluxes associated with the divergence-free constraint mimic those introduced for the elliptic term
in mixed formulation. A synthetic review can be found in [4]. Toselli [5] introduces and analyses a
hp-DG method for the Stokes problem. Finally, Girault et al. [6] present and analyse a DG method
with non-overlapping domains for the Stokes and Navier–Stokes problems.
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A new formulation for the inviscid fluxes was proposed in [7, 8]. The key idea of the method
is to introduce a local modification of the problem at the elementary interface level. Following
the approach first presented in [9], the authors treat the viscous and inviscid terms separately. The
former is discretized using the BRMPS method introduced in [10] and analysed in [11]. For the
latter, a technique similar to the one used for the compressible case is adopted, i.e. the fluxes are
obtained from the solution of a Riemann problem with initial datum given by the (discontinuous)
solution. In order to obtain a hyperbolic problem, the mass equation is perturbed by adding an
artificial compressibility term of the form

1

c2
�p
�t

where c>0 is a parameter to be suitably chosen. This Riemann problem-based method can be
easily extended to the more complicate Oseen and Navier–Stokes cases by simply modifying the
Riemann solver. When applied to the Navier–Stokes equations, it gives rise to non-linear fluxes,
which can be defined only implicitly, while an explicit expression is available in the other cases.
Thorough numerical testing has been provided in [7, 12].

The local artificial compressibility flux displays some advantages with respect to other methods:
(i) the approach can be easily generalized to a variety of incompressible problems, from the
viscosity-dominated Stokes equations to the advection-dominated incompressible Euler equations;
(ii) the approximation of the pressure seems to benefit from this physically grounded scheme,
as pointed out in [7], where a comparison with the schemes proposed in [1–3] is presented;
(iii) unlike some other DG methods, stability is achieved even when the same polynomial order
is used for both velocity and pressure. This feature may be of some practical importance from
the implementation viewpoint. Moreover, it makes the method accessible to those practitioners
who already dispose of a compressible DG code and want to be able to perform incompressible
computations. Besides this specific advantages, we have the usual ones associated with the use
of discontinuous finite elements such as the possibility of handling non-conforming meshes in a
natural way, the easy implementation of hp-adaptive versions, etc.

In this work we analyse the local artificial compressibility method applied to the Stokes problem
extending the strategy used in [11] for the purely elliptic case to the resulting partially coercive
problem. To this purpose, inspired by [13], we define two norms, one for continuity and the other
for stability, and prove an inf–sup condition based on the partial coercivity of the bilinear form
as well as on its continuous counterpart. Using the above results, we obtain error estimates in the
energy norm and refine the estimate for the L2-norm of the velocity error deploying a standard
duality argument. An abstract framework for the analysis of DG methods for more general three-
field Friedrichs’ systems with partial coercivity has recently been proposed in [14]. To pinpoint the
issues related to the inviscid terms, the analysis in the present work is entirely carried out on the
primal formulation of the problem and, recalling [11], it can be easily extended to other stable and
completely consistent DG approximations of the Laplacian. The most relevant difference from the
schemes analysed in [5, 6] is that the local artificial compressibility perturbation automatically adds
a stabilising term for the pressure which makes the method suitable for equal order approximation.

The paper is organized as follows: in Section 2 we derive the DG discretization of the Stokes
equations, pointing out the terms where the numerical fluxes appear and showing how they can be
computed by means of a suitable Riemann solver; in Section 3 we list some preliminary results
from the literature and we introduce some hypotheses that are necessary for the subsequent proofs;
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ANALYSIS OF A DG APPROXIMATION OF THE STOKES PROBLEM 795

in Section 4 we analyse the discrete problem and prove optimal convergence estimates; in Section 5
we numerically evaluate the performance of the method and draw some conclusions in Section 6.

2. FORMULATION OF THE METHOD

2.1. Discontinuous Galerkin discretization

We consider the Stokes problem

−�u + ∇p = f in �

∇·u= 0 in �

u= 0 on ��

(1)

� being a bounded connected Lipschitz domain in Rd , d ∈ {2, 3}. Since Dirichlet boundary con-
ditions are prescribed for u, the pressure is only defined up to a constant. In order to remove this
ambiguity, we further require that ∫

�
p dx= 0 (2)

For the proof that problem (1) together with condition (2) is well posed see, e.g. [15, Section 4].
To avoid unnecessary complications, we shall henceforth assume that � is polygonal and that

Th represents a family of triangulations parametrized by h which cover it exactly. We denote
by Fi

h the set of element interfaces, i.e. f ∈Fi
h if f is a (d − 1)-manifold and there are K+,

K− ∈Th such that f = �K+ ∩ �K−. The set of the faces that separate the mesh from the exterior
of � is denoted with F�

h , i.e. f ∈F�
h if f is a (d − 1)-manifold and there is K ∈Th such that

f = �K ∩ ��. For a given interface Fi
h � f = �K+ ∩ �K−, we shall note Th( f )

def= K+ ∪ K−.
Similarly, for a boundary face F�

h � f = �K ∩ ��, we shall let Th( f )
def= K . The set of all the

faces is denoted with Fh , i.e. Fh
def= Fi

h ∪F�
h .

In order to derive the DG approximation, we introduce the auxiliary variable r and re-write the
problem as the first-order system

r− ∇u= 0 in �

−∇·r+ ∇p = f in �

∇·u= 0 in �

u= 0 on ��

The weak formulation on the generic element K ∈Th can be obtained by multiplying every
equation by a smooth test function and integrating over K∫

K
r:s dx +

∫
K

∇·s·u dx −
∫

�K
nK ·s·u d� = 0 ∀s∈R
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∫
K
r:∇v dx −

∫
�K

nK ·r·v d� −
∫
K
p∇·v dx +

∫
�K

pv·nK d� = 0 ∀v∈V

−
∫
K
u·∇q dx +

∫
�K

u·nKq d� = 0 ∀q ∈ Q

where nK denotes the normal unit vector pointing out of the element K . The above system of
equations makes sense for all (r,u, p), (s, v, q)∈R×V× Q with

R
def= [H1(Th)]d2, V def= [H1(Th)]d , Q

def= H1(Th)

where, for k�1, we have set

Hk(Th)
def= {v ∈ L2(�); v|K ∈ Hk(K ), ∀K ∈Th}

We shall consider the above space in order for weak derivatives and integrals of traces to make
sense as well as to avoid technical details linked with the use of dualities.

We next introduce the finite-dimensional space made up of polynomial functions possibly
discontinuous across element boundaries: for k�1

Vh ≡ V k
h

def= {vh ∈ L2(�); vh |K ∈ Pk(K ), ∀K ∈Th}

The components of the discrete solution are sought in the following spaces:

Rh
def= [V k�

h ]d2, Vh
def= [V ku

h ]d , Qh
def= V

kp
h (3)

with ku−1�k��ku and ku−1�kp�ku . For future use, we shall introduce the symbolsW def= V× Q

and Wh
def= Vh × Qh .

Optimal error estimates with respect to the approximation properties of the discrete spaces are
obtained taking k� = kp = ku − 1. Nevertheless, a common choice is to set k� = kp = ku . This
results in a slightly increased computational effort, but, in some cases, may be preferable from
the implementation viewpoint. Moreover, when dealing with the complete Navier–Stokes system,
the above choice ensures better convergence results in the low viscosity limit. Indeed, estimates
similar to those obtained for hyperbolic problems were proved in [8] for the incompressible Euler
equations provided the same polynomial degree is used for both velocity and pressure.

All the results obtained for kp = ku extend directly to the case when kp = ku −1, which is more
favourable in terms of stability. We shall therefore focus the analysis on the former, more difficult,
case and set, from this point on, k� = ku = kp.

Remark 2.1
By definition of the space Vh

vh ∈ Vh ⇒ ∇vh ∈ [V k−1
h ]d ⊂[V k

h ]d

This inclusion property is not enjoyed by standard conforming approximations.
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In order to write the discrete problem, we replace the infinite-dimensional spaces with the
discrete ones. Since the test functions are possibly discontinuous across element boundaries, it
is necessary to establish weak inter-element links by introducing numerical fluxes. The resulting
problem reads: find (rhuh ph) ∈Rh ×Vh × Qh such that∫

K
rh :sh dx +

∫
K

∇·sh ·uh dx −
∫

�K
nK ·sh ·û� d� = 0 ∀sh ∈Rh∫

K
rh :∇vh dx −

∫
�K

nK ·r̂·vh d� −
∫
K
ph∇·vh dx +

∫
�K

p̂vh ·nK d� = 0 ∀vh ∈Vh

−
∫
K
uh ·∇qh dx +

∫
�K

ûdiv·nKqh d� = 0 ∀qh ∈ Qh

(4)

where û� and r̂ indicate the numerical fluxes associated with the viscous term, while p̂ and ûdiv
are the numerical fluxes associated with the incompressibility constraint.

2.2. Numerical fluxes

To complete the formulation of the method, it only remains to devise suitable expressions for the
numerical fluxes. Following [7, 8], we consider the steady case as the limit of a pseudo-evolutive
problem. Let f ∈Fi

h be a generic internal face of the triangulation. In order to compute the inviscid
fluxes at a point P∈ f , we consider the projection of the problem onto the normal direction to the

face (see Figure 1). For brevity of notation, let u
def= u·n be the normal component of the velocity

at P and consider a frame such that the x-axis is aligned with n. The expressions for the inviscid
fluxes are then obtained by solving the Riemann problem associated with the perturbed system

1

c2
�p
�t

+ �u
�x

= 0

�u
�t

+ �p
�x

= 0

(5)

with discontinuous initial datum given by (u+, p+) and (u−, p−), respectively. The unsteady
pressure term in the box is indeed the local artificial compressibility perturbation that allows to
recover the hyperbolicity of the projected problem. Suitable modifications can be introduced on
boundary faces to account for the weak enforcement of Dirichlet boundary conditions on the
velocity, as briefly discussed below.

Figure 1. Frame for the computation of the inviscid numerical fluxes at point P.
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Figure 2. Structure of the Riemann problem.

System (5) accounts only for the normal component of the velocity, which is a scalar irrespec-
tively of the number of space dimensions of the problem, d . In [7] the authors show that the
tangential component of the velocity can be computed independently once the normal component
and the pressure have been determined. However, since the tangential component will not be
relevant for the definition of the numerical fluxes, we omit the details here and refer the reader to
the cited work.

The Riemann problem thus obtained has the structure depicted in Figure 2. The left and right
states correspond to the initial datum. The star region is separated from the left and right states
by two centred waves, which can be either rarefactions or shocks, and it contains a contact
discontinuity, across which the sole tangential component of the velocity may vary. It was proved
in [7] that the solution on the x/t = 0 line of this problem has the following analytical expression:

u∗ = {u} + 1

2c
[p], p∗ = {p} + c

2
[u] (6)

where [·] denotes the usual jump operator and {·} is the average operator defined below. Observe
that (i) the sole normal component of udiv appears in the integral in the third line of (4), which
renders the definition of its tangential component unnecessary; (ii) the expressions of the fluxes
can be directly plugged into the steady problem when the tuning parameter c does not depend on
time, since the fluxes themselves are not time dependent.

We next introduce a few trace operators. Let Fi
h � f = K+ ∩ K− be an internal face, and let

u be a tensor field of rank N such that a (possibly two-valued) trace is defined on f . Such an
assumption is verified, e.g. by functions in [Vh]dN ⊕[H1(Th)]dN

. Let n± denote the outward
normal to K±, respectively. Using Einstein’s notation, we define

{u} def= u
+ + u−

2

(�u�)i1i2...iN+1

def= �+
i1i2...iN

n+
iN+1

+ �−
i1i2...iN

n−
iN+1

([u]n)i1i2...iN−1

def= �+
i1i2...iN−1 j

n+
j + �−

i1i2...iN−1 j
n−
j
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An example will clarify the above definitions. For the sake of simplicity, let, wh be a tensor field
of rank 2 belonging to �h . Then, {wh} will be the component-wise algebraic mean between its
trace taken from K+ and that taken from K−. On the other hand, at a given point P∈ f , �wh�
will be the third-rank tensor whose (i, j, k)th component is given by

(�wh�)i jk = �+
i j n

+
k + �−

i j n
−
k

Finally, [wh]n will be the vector whose i th component is given by

([wh]n)i = �+
ikn

+
k + �−

ikn
−
k

where a summation over the saturated index k is understood. These definitions generalize the ones
introduced in [11] and can be extended to boundary faces to account for the weak imposition of
the Dirichlet conditions on u. In particular, for all f ∈F�

h and for all (q, v, s) ∈ L2( f ) × [L2( f )]d
× [L2( f )]d2 , we set

�q� def= 0, {q} def= q, {v} def= v, �v� def= v ⊗ n, [v]n def= v·n, {s} def= s

Let now f ∈Fh . Following [7] and keeping in mind the discussion above, we define the
numerical fluxes across f as

û� = {uh}, r̂={∇huh} + �{r f (�uh�)}, p̂= {ph} + c

2
[uh]n, ûdiv ={uh} + 1

2c
�ph� (7)

where � and c are positive parameters and ∇h indicates the element-wise gradient operator. For
all second-rank tensors u∈ [L2( f )]d2 , the lifting operator r f (u) ∈Rh is defined as the solution of
the following problem: for all f ∈Fh∫

�
r f (u):sh dx=−

∫
f
u:{sh} d� ∀sh ∈Rh

Observe that we are indeed defining one lifting operator for each face. Since the test functions with
non-zero mean on f ∈Fh are only the ones supported in Th( f ), we conclude that the support
of the associated lifting operator r f coincides with Th( f ). This definition is perfectly coherent
with the face-based definitions of numerical fluxes given in (7).

Clearly, the inviscid fluxes p̂, ûdiv are directly derived from the solution (6) of the Riemann
problem with initial datum given by (u+

h , p+
h ), (u−

h , p−
h ).

2.3. The discrete problem

We proceed summing Equation (4) over the elements and counter-integrating by parts the viscous
terms in the momentum equation and the mass equation. For the latter step, the following formula
proved in [11] can be used: for all tensor fields u and / of rank 2 and 1 respectively such that a
(possibly two-valued) trace is defined on all f ∈Fh∑

K∈Th

∫
�K
u:/⊗ n d�= ∑

f ∈Fi
h

∫
f
{u}:�/� + {/}·[u]n d� + ∑

f ∈F�
h

∫
f
u:/⊗ n d� (8)
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To conclude, the auxiliary variable rh can be eliminated proceeding as in [11] to recover the primal
formulation of the problem. The discrete problem then reads: find (uh, ph) ∈Wh such that

B(uh, ph; vh, qh) =G(vh) ∀(vh, qh) ∈Wh (9)

where

B(u, p; v, q)
def= a(u, v) + b(v, p) − b(u, q) + j�(u, v) + jp(p, q) + jn(u, v)

G(v) def=
∫

�
g·v dx

and

a(u, v) def=
∫

�
∇hu:∇hv dx − ∑

f ∈Fh

∫
f
{∇hu}:�v� + �u�:{∇hv} d�

=
∫

�
∇hu:∇hv dx + ∑

f ∈Fh

∫
�

∇hu:r f (�v�) + r f (�u�):∇hv dx

b(v, p) def= −
∫

�
p∇h ·v dx + ∑

f ∈Fh

∫
f
{p}[v]n d�

j�(u, v) def= ∑
f ∈Fh

∫
�

�r f (�u�):r f (�v�) dx

jn(u, v) def= ∑
f ∈Fh

∫
f

c

2
[u]n[v]n d�

jp(p, q)
def= ∑

f ∈Fh

∫
f

1

2c
�p�·�q� d�

Recalling [11], we know that a sufficient condition for the stability of the discretization of the
Laplacian is that � be greater than the maximum number of faces of one element in the mesh.
A similar condition can be found in the Stokes case as well (see Proposition 4.2). In addition,
it turns out that also the term jn(·, ·) contributes to stabilize the velocity. Furthermore, in what
follows it will become clear that a suitable form for the artificial compressibility parameter is
c= �/h f with �>0. For the sake of simplicity, we shall henceforth assume that both � and � are
real positive constants. Although possible, more general choices do not seem to be particularly
useful in practice.

2.4. Analogies with other methods

It is worth further investigating the analogy with interior penalty and artificial compressibility
methods. In Equation (9) we recognize two contributions: the first one, involving only volume
integral terms, is exactly the customary mixed formulation of the Stokes problem; the second one,
which gathers up all the boundary integral terms, is responsible for consistency, stability, and the
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weak enforcement of boundary conditions. Three stabilizing contributions are present, collected in
the bilinear forms j�(·, ·), jn(·, ·) and jp(·, ·). The first and the second terms penalize, respectively,
the jumps of the velocity and of its normal component across element boundaries. Although,
strictly speaking, only the j�(·, ·) term is necessary for the analysis, numerical experiments show
that adding jn(·, ·) seems to enhance the accuracy. Moreover, if divergence-free bases like the ones
proposed in [16] were used, this term would penalize the only divergence contribution left, i.e.
the one due to discontinuous normal components. The last term is in some sense analogous to the
traditional artificial compressibility contribution. As a matter of fact, the matrix B resulting from
the discretization of the Stokes problem can be partitioned into the following four blocks:

B(u, p; v, q)=
[

B11(u, v) B12(v, p)

−B21(u, q) B22(p, q)

]

In traditional artificial compressibility methods, the B22 block is the pressure mass matrix scaled
by the inverse of the artificial compressibility parameter c. The method considered in the present
work replaces the pressure mass matrix by the matrix of pressure jumps on the union of all the
faces, which constitutes a consistent perturbation of the problem.

3. PRELIMINARY RESULTS

We introduce the notation

h
def= max

K∈Th

hK , hK
def= max

f ⊂�K
h f

where f is the generic face of K and h f its diameter. For a given h > 0, the triangulation Th is
assumed to match the following conditions:

(i) every element K ∈Th is affinely equivalent to one of the several elements in an arbitrary
but fixed set;

(ii) the triangulation can be 1-irregular but it has to satisfy the following property:

∃�1>0 : 0<hK
�K

��1 ∀K ∈Th

where �K denotes the diameter of the biggest ball included in K . This property implies that there
exists 0<�K<1 such that

�K�
min f ⊂�K h f

max f ⊂�K h f
�1 ∀K ∈Th (10)

Note that �K is independent of the meshsize but it depends on the regularity of the mesh.
Whenever possible, the symbols � and � will be used for inequalities that hold up to a real

positive parameter independent of the meshsize h but possibly depending on the polynomial degrees
kr, ku and kp as well as on the mesh regularity.

We shall consider projection operators satisfying the following lemma.
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Lemma 3.1 (Projection operator)
For all K ∈Th , let � be a linear continuous operator from Hs+1(K ), s�0, onto Pk(K ) such that
�w =w for all w ∈ Pk(K ), k�0. Then, for all K ∈Th ,

|w − �w|r,K � hmin(s,k)+1−r
K ‖w‖s+1,K , r ∈ {0, 1, 2}

‖w − �w‖0,�K � hmin(s,k)+1/2
K ‖w‖s+1,K

The proof is classical and can be found, e.g. in [17]. With little abuse of notation, we shall denote
with the same symbol � the discontinuous projection operator obtained applying � element wise.
Among the operators that meet the requirements of Lemma 3.1 we shall select the L2-orthogonal
projector onto the discontinuous space V k

h (see, e.g. [15, Section 1.6.3]), since L2-orthogonality
will be needed to prove the discrete inf–sup condition. When the projection operator is applied to
a vector or tensor quantity, the notation has to be intended component wise. We shall also assume
that the following H1-stability condition is satisfied:

‖�w‖1,K�‖w‖1,K ∀K ∈Th (11)

In order to treat the boundary terms, we shall need the following trace inequality (see [18]):

‖v‖20,�K�
(
h−1
K ‖v‖20,K + hK |v|21,K

)
∀v ∈ H1(K ) (12)

Some useful bounds for the trace operators are collected in the following lemma.

Lemma 3.2 (Trace operator bounds)
Let u∈ [Hs(�)]dN

be a tensor quantity of rank N and let �∈ L2( f ) be non-negative for all f ∈F.
Then it holds

∑
f ∈Fh

‖�1/2{u}‖20, f �
∑

K∈Th

‖�1/2u‖20,�K
∑

f ∈Fh

‖�1/2�u�‖20, f �2
∑

K∈Th

‖�1/2u‖20,�K
∑

f ∈Fh

‖�1/2[u]n‖20, f �2
∑

K∈Th

‖�1/2u‖20,�K

Proof
We focus on a generic internal face Fi

h � f = �K+ ∩ �K−, since the assert is trivially verified for

f ∈F�
h . The total contribution from K± can be split as follows:∫

�K±
�{u}2 d�=

∫
f ∈�K±

�{u}2 d� +
∫

�K±\ f
�{u}2 d�
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where f ∈ �K± means that we are regarding the face as belonging to the boundary of element
K±. The total contribution on the face f is, therefore,∫

f ∈�K+
�{u}2 d� +

∫
f ∈�K−

�{u}2 d� = 1

2

∫
f
(�u+2 + �u−2 + 2�u+u−) d�

�
∫
f
(�u+2 + �u−2

) d�

=
∫
f ∈�K+

�u2 d� +
∫
f ∈�K−

�u2 d�

where we have set u± = u|K± and the average operator was expanded according to its definition.
The other formulas can be proved in a similar way. �

In what follows we shall often use the above lemma with �= h f or �= 1/h f , which obviously
satisfy the hypotheses. The following lemma was proved in [11].
Lemma 3.3 (Lifting operator bounds)
Let f ∈Fh and assume that uh ∈ [Pk( f )]d2 . Then,

‖r f (uh)‖20,� � h−1
f ‖uh‖20, f � ‖r f (uh)‖20,�

A local inverse inequality is assumed to hold for all vh ∈ V k
h , K ∈Th and 0<h<1

‖vh‖l,K � hm−l
K ‖vh‖m,K (13)

For the proof we refer the reader to [15].
Finally, we define a shorthand notation for the components of the error inside and outside the

discrete space. Let (u, p) ∈V× Q and (uh, ph) ∈Vh × Qh . We then let

u − uh = (u − �u) + (�u − uh)
def= e�,u + eh,u

p − ph = (p − �p) + (�p − ph)
def= e�,p + eh,p

(14)

4. CONVERGENCE ANALYSIS

4.1. Existence and uniqueness of the discrete solution, Galerkin orthogonality, and adjoint
consistency

Expressions for the fluxes that are single valued on every face of the triangulations are called con-
servative. It is not difficult to realize that the numerical fluxes defining the method are conservative,
a property which will be used in the following theorem.

Theorem 4.1 (Existence and uniqueness)
The problem defined by (9) has a unique approximate solution (uh, ph) ∈Wh .
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Proof
The proof can be carried out by showing that the only admissible solution to the homogeneous
problem with f≡ 0 in � and u= 0 on �� is the trivial solution (0, 0). (i) Taking (vh, qh) = (uh, ph)
as a test function in (9) we have that

a(uh,uh) + j�(uh,uh) + jn(uh,uh) + jp(ph, ph) = 0

which implies that ∇uh |K ≡ 0 on every K ∈Th , that �ph� = 0 across all f ∈Fi
h and that �uh�= 0

across all f ∈Fh . Since u= 0 on ��, we conclude that uh ≡ 0. (ii) In order to prove that the
approximate pressure is also zero, we substitute uh = 0 in the momentum equation, integrate by
parts using (8) and deploy the fact that ph is continuous across interfaces to write

0= a(0, vh) + b(vh, ph) + j�(0, vh) + jn(0, vh)

= −
∫

�
ph∇h · vh dx + ∑

f ∈Fh

∫
f
{ph}[vh]n d�

=
∫

�
∇h ph ·vh dx − ∑

f ∈Fh

∫
f
�ph� · {vh} d� =

∫
�

∇h ph ·vh dx

for all vh ∈Vh . Since ∇h ph is in Vh , this entails that ∇ph |K ≡ 0 for all K ∈Th . The proof is
concluded recalling that we required

∫
� ph dx= 0 in order for the pressure to be uniquely defined

and that the jumps of the pressure across internal faces are zero. �

Theorem 4.2 (Galerkin orthogonality)

Let (u, p) ∈ [
H2(�)

]d × H1(�) be the solution of the Stokes problem (1) and be (uh, ph) ∈Wh
its approximation obtained solving (9). Then

B(eu, ep; vh, qh) = 0 ∀(vh, qq) ∈Wh

Proof
The assert can be proved as in [11] using the consistency of the numerical fluxes and the regularity
assumptions on the exact solution. By virtue of the latter, the jumps of the solution on element
boundaries are all zero. We therefore have

B(u, p; vh, qh) =G(vh) ∀(vh, qh) ∈Wh

The proof can be completed by subtracting (9) from the previous equation and accounting for the
linearity of the form B. �

Note that the stabilization contribution jp(·, ·) plays an important role in establishing the unicity
of the approximate solution. We conclude by stating a property which will be useful to obtain an
optimal error estimate for the L2-norm of the velocity error.
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Remark 4.1
Let (w, r) solve

−�w + ∇r = k in �

∇·w= 0 in �

u= 0 on ��

(15)

It is a simple matter to realize that the following adjoint consistency condition holds:

B(w, r; v, q)= B(v,−q;w, −r) = (v, k)� ∀v∈V

4.2. Norms for the analysis

Let

V(h)
def= V ⊕ Vh, Q(h)

def= Q ⊕ Qh, W(h)
def= V(h) × Q(h)

Following an established practice, we introduce two norms, one for the stability and one for the
continuity. For all (v, q)∈W(h), we let

|‖(v, q)‖|2 def= ∑
K∈Th

|v|21,K + ‖q‖20,� + |v|2� + |v|2n + |q|2p

|](v, q)[|2 def= |‖(v, q)‖|2 + ∑
K∈Th

[h−2
K ‖v‖20,K + h2K |v|22,K + h2K |q|21,K ]

The seminorms associated with the penalty terms are defined as follows:

|v|2� def= ∑
f ∈Fh

‖r f (�v�)‖20,�, |v|2n def= ∑
f ∈Fh

h−1
f ‖[v]n‖20, f , |q|2p def= ∑

f ∈Fh

h f ‖�q�‖20, f

Owing to the inverse inequality (13), the above norms are equivalent on the discrete space Wh ,
i.e. for all (vh, qh) ∈Wh

|‖(vh, qh)‖| � |](vh, qh)[|� |‖(vh, qh)‖| (16)

In what follows we shall assume that c= �/h f with �>0.

Lemma 4.1 (Interpolation)
Let � be a projection operator satisfying the assumptions of Lemma 3.1 and let (v, q)∈
[Hs+1(Th)]d × Ht+1(Th) with s�1 and t�0. Then,

|](v − �v, q − �q)[| �
( ∑
K∈Th

h2min(s,k)
K ‖v‖2s+1,K + ∑

K∈Th

h2min(t,k)+2
K ‖q‖2t+1,K

)1/2
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Proof
Observe that, owing to the regularity assumptions on v, �v� vanishes across all the faces. As a
consequence, the bounds for the lifting operator r f (u) stated in Lemma 3.3 are still valid for
u= �v − �v�. We therefore have∑

f ∈Fh

‖r f (�v − �v�)‖20,� �
∑

f ∈Fh

‖h−1/2
f �v − �v�‖20, f

�
∑

K∈Th

h−1
K ‖v − �v‖20,�K

�
∑

K∈Th

�K h
−1
K (h−1

K ‖v − �v‖20,K + hK |v − �v|21,K )

�
∑

K∈Th

h2min(s,k)
K ‖v‖2s+1,K

where we used Lemma 3.3, Lemma 3.2, mesh regularity (10), trace inequality (12), and Lemma 3.1.
The rest of the proof can be carried out in a standard way by a repeated use of Lemma 3.1 and
of the trace inequality (12). �

4.3. Continuity

Proposition 4.1 (Continuity)
Let (u, p), (v, q)∈W(h) and let � be a projection satisfying Lemma 3.1. We have that

B(u, p; v, q)�|](u, p)[| |](v, q)[|

Proof
The proof can be carried out bounding each term in the bilinear form B separately. For the first
term, observe that

a(u, v) = ∑
K∈Th

∫
K

∇u:∇v dx + ∑
f ∈Fh

∫
f
{∇hu}:�v� d� + ∑

f ∈Fh

∫
f
�u�:{∇hv} d� def= T1 + T2 + T3

Clearly, T1�
∑

K∈Th
|u|1,K |v|1,K � |](u, 0)[| |](v, 0)[|. For the second contribution, we use

Lemma 3.2 together with the trace inequality (12) to write

T2�
∑

f ∈Fh

‖h1/2f {∇hu}‖0, f ‖h−1/2
f �v�‖0, f �

( ∑
K∈Th

|u|21,K + ∑
K∈Th

h2K |u|22,K
)1/2

and, finally, T2 � |](u, 0)[| |](v, 0)[|. A similar result holds for T3.
The second term reads

b(v, p) =− ∑
K∈Th

∫
K
p∇·v dx + ∑

f ∈Fh

∫
f
{p}[v]n d� = T1 + T2
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For the first contribution we immediately have T1�
∑

K∈Th
‖p‖0,K ‖v‖1,K�|](0, p)[| |](v, 0)[|.

The second contribution can be treated using Lemma 3.3 together with trace inequality (12) as
follows:

T2�
∑

f ∈Fh

‖h1/2f {p}‖0, f ‖h−1/2
f [v]n‖0, f �

( ∑
K∈Th

‖p‖20,K + ∑
K∈Th

h2K |p|21,K
)1/2

|](v, 0)[|

whence T2�|](0, p)[| |](v, 0)[|.
Finally, we immediately have

j�(u, v) + jn(u, v) + jp(p, q)�|](u, p)[| |](v, q)[|

which concludes the proof. �

4.4. Partial coercivity and discrete inf–sup condition

In this section, we prove a partial coercivity result for the velocity and a discrete equivalent of
the continuous inf–sup condition for the Stokes system (1). For all (vh, qh) ∈Wh , we define the
following seminorm, with respect to which the bilinear form is coercive:

|(vh, qh)|2c def= ∑
K∈Th

|v|21,K + |v|2� + |v|2n + |q|2p

Proposition 4.2 (Partial coercivity)
The bilinear form B satisfies

B(vh, qh; vh, qh) � |(vh, qh)|2c ∀(vh, qh) ∈Wh

Proof
Plugging (vh, qh) into the definition of the bilinear form B we obtain

B(vh, qh; vh, qh) = a(vh, vh) + j�(vh, vh) + jn(vh, vh) + jp(qh, qh)

From the definition of the form a we have that

a(vh, vh)�
∑

K∈Th

|vh |21,K − 2
∑

f ∈Fh

∣∣∣∣
∫
f
{∇hvh}:�vh� d�

∣∣∣∣
Let T denote the second term in the right-hand side. Using Lemma 3.2, inequalities (12) and (13)
we have that

T�
∑

f ∈Fh

‖h1/2f {∇hvh}‖0, f ‖h−1/2
f �vh�‖0, f �C

( ∑
K∈Th

|vh |21,K
)1/2

|vh |�
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with C a positive parameter independent of the meshsize h. Using the above result together with
the arithmetic–geometric inequality (ab�a2	/2 + b2/(2	)) we conclude that

B(vh, qh; vh, qh)�
(
1 − C	

2

) ∑
K∈Th

|vh |21,K +
(

� − C

2	

)
|vh |2� + |vh |2n + |qh |2p

which gives the desired results provided: (i) 	 is chosen so that the first term in brackets is
positive and � is large enough for the second term in brackets to be positive as well; (ii) we take
Cs = min(1 − C	/2, � − C/2	). �

Following the guidelines of the reasoning in [19, Lemma 5.2], it can be proved that a sufficient
condition for the stability is that � be greater than the maximum number of faces of a mesh
element.

The error estimate for the pressure is based on the following proposition, which contains a
discrete equivalent of the inf–sup condition. We recall that, by the continuous inf–sup condition
for the standard Stokes forms, there exists a velocity field u∈ [H1

0 (�)]d satisfying

−
∫

�
q∇·u dx�
‖q‖20,�, ‖u‖1,��‖q‖0,� ∀q ∈ Q (17)

Proposition 4.3 (Discrete inf–sup condition)
There exist positive constants 
1 and 
2 independent of the meshsize such that for all (vh, qh) ∈Wh
there is wh ∈Vh such that

B(vh, qh;wh, 0)�
1‖qh‖20,� − 
2|(vh, qh)|2c, |‖(wh, 0)‖|�‖qh‖0,�

Proof
Let u be the velocity field for which condition (17) is satisfied for (v, q)= (vh, qh). By definition
of the bilinear form B and deploying the fact that �u� = 0 across all f ∈Fh

B(vh, qh; �u, 0) � b(u, qh) − |b(u − �u, qh)| − |a(�u, vh)| − | j�(vh, �u)| − | jn(vh, �u)|
def= b(u, qh) − T1 − T2 − T3 − T4

Thanks to (17), we immediately conclude that b(u, qh)�
‖qh‖20,�. We then proceed to bound the
remaining terms. Throughout the rest of the proof, the symbols Ci , i ∈ {1, . . . , 3} will denote real
positive parameters independent of the meshsize h but possibly depending on the mesh regularity
and on the polynomial degrees used in the approximation. Owing to (8)

b(u − �u, qh) =
∫

�
(u − �u) · ∇hqh dx︸ ︷︷ ︸

=0

− ∑
f ∈Fh

∫
f
{u − �u}·�qh� d�

�
( ∑
K∈Th

h−2
K ‖u − �u‖20,K + ∑

K∈Th

|u − �u|21,K
)1/2

|qh |p

� |]u − �u[| |qh |p�‖qh‖0,� |qh |p
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where we have used the fact that (u − �u) ∈V⊥
h together with Lemma 3.1 and (17) to write

|](u − �u, 0)[|� ‖u‖1,� � ‖qh‖0,� (18)

We then conclude that

T1�
C1	1
2

‖qh‖20,� + C1

2	1
|(0, qh)|2c

The second term can be bounded as follows: since u is continuous across interfaces and equal
to zero on boundary faces, deploying the definition of the boundary operator we have that

T2 �
∑

K∈Th

∣∣∣∣
∫
K

∇vh :∇(u − �u) dx

∣∣∣∣+ ∑
f ∈Fh

∣∣∣∣
∫

�
r f (�vh�):∇h(u − �u) dx

∣∣∣∣
× ∑

K∈Th

∣∣∣∣
∫
K

∇vh :∇u dx

∣∣∣∣+ ∑
f ∈Fh

∣∣∣∣
∫

�
r f (�vh�):∇u dx

∣∣∣∣+ ∑
f ∈Fh

∣∣∣∣
∫

�
r f (u − �u):∇hvh dx

∣∣∣∣
�
( ∑
K∈Th

|vh |21,K + |vh |2�
)1/2

⎡
⎣( ∑

K∈Th

|u − �u|21,K + |u − �u|2�
)1/2

+ |u|1,�
⎤
⎦

� |(vh, 0)|c(|]u − �u[| + |u|1,�)�C2	2
2

‖qh‖20,� + C2

2	2
|(vh, 0)|2c

where again we have used (18) to conclude.
Proceeding in a similar way as before we have that

T3 + T4 = | j�(vh,u − �u)| + | jn(vh,u − �u)|�C3	3
2

‖qh‖20,� + C3

2	3
|(vh, 0)|2c

Collecting the above results, we conclude that

B(vh, qh; u, 0)�(
 − C1	1 − C2	2 − C3	3)‖q‖20,� −
(
C1

	1
+ C2

	2
+ C3

	3

)
|(vh, qh)|c

for all 	1, 	2, 	3>0. On a proper choice of the parameters 	i we can find two positive values
K1, K2>0 independent of the meshsize such that

B(vh, qh; u, 0)�K1‖qh‖20,� − K2|(vh, qh)|2c

Finally, we note that, by virtue of the regularity of u we have

|‖(�u, 0)‖|2 = |�u|21,� + |u − �u|2� + |u − �u|2n
� ‖u‖21,� + |](u − �u, 0)[|2�‖u‖21,��K3‖q‖20,�
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where we used Equation (11), Lemma 4.1 and the continuous inf–sup condition. The proof is
completed by takingwh = �u/K3, 
1 = K1/K3, and 
2 = K2/K3. �

4.5. Error estimates

In this section, we obtain a priori error estimates for the velocity and the pressure. In particular,
we show that, when equal-order approximation with polynomials of degree k�1 is used and the
solution is sufficiently regular, the error in the velocity and in the pressure scales, respectively, as
hk+1 and hk . This result is stated in the following theorem.

Theorem 4.3 (Error estimates)
Let (u, p) ∈ [Hs+1(�)]d × Ht+1(�) be the solution of (1) and let (uh, ph) its approximation
obtained solving (9). Assume that the hypotheses on the mesh listed in Section 3 are satisfied and
that the space setting (3) is chosen for k�1. Take moreover c= �/h f for some � > 0 and � large
enough to ensure stability. Then, we have that

|](u − uh, p − ph)[|� hmin(s,k)‖u‖s+1,� + hmin(t,k)+1‖p‖t+1,� (19)

‖u − uh‖0,� � hmin(s,k)+1‖u‖s+1,� + hmin(t,k)+2‖p‖t+1,� (20)

Proof
We proceed to prove the estimates.

(i) Using Proposition 4.2, Theorem 4.2, Proposition 4.1, and the norm equivalence stated in (16)
we have that

|(eh,u, eh,p)|2c � B(eh,u, eh,p; eh,u, eh,p) = B(−e�,u, −e�,p; eh,u, eh,p)

� |](e�,u, e�,p)[| |‖(eh,u, eh,p)‖|

It only remains to estimate the L2-norm of the pressure. Using Proposition 4.3 and proceeding in
a similar way as before, we deduce that

‖eh,p‖20,� � B(eh,u, eh,p;wh, 0) + |(eh,u, eh,p)|2c
� |](e�,u, e�,p)[| |‖(eh,u, eh,p)‖| + |(eh,u, eh,p)|2c

Summing the above equations and using Lemma 3.1 we obtain

|‖(eh,u, eh,p)‖|� |](e�,u, e�,p)[|

Estimate (19) is then obtained by using the error decomposition (14) together with Lemma 4.1.
(ii) In order to prove (20), we use a standard duality argument. Consider the homogeneous

Stokes problem (15) with right-hand side k=u− uh . The adjoint consistency condition discussed
in Remark 4.1 gives

B(v,−q;w, −r) = (u − uh, v)� ∀(v, q)∈V× Q
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Now setting r̃
def= − r and choosing (v,−q)= (u − uh, p − ph) we conclude that

B(u − uh, p − ph;w, r̃) =‖u − uh‖20,�

Let (�1w, �0r̃) be the piecewise linear and the piecewise constant interpolant of w and r̃ ,
respectively. Then by Theorem 4.2 and the inclusion property of Remark 2.1 we have that
B(u − uh, p − ph; �1w, �0r̃) = 0. As a consequence

‖u − uh‖20,� = B(u − uh, p − ph;w − �1w, r̃ − �0r̃)

� |](u − uh, p − ph)[| |](w − �1w, r̃ − �0r̃)[|

By virtue of Lemma 4.1, we have |](w − �1w, r̃ − �0r̃)[|� h(‖w‖2,� + ‖r̃‖1,�). Assuming that
the elliptic regularity condition ‖w‖2,� + ‖r‖1,��‖k‖0,� holds for the solution of system (15),
we conclude that

|](w − �1w, r̃ − �0r̃)[|� h‖u − uh‖0,�

Using this result together with Lemma 4.1 and (19) we obtain the sought estimate. The proof is
thus concluded. �

An estimate for the L2-norm of the pressure can be obtained from (19), since it is a part of the
energy norm |]·[|.

The proofs above fit the case when mixed-order elements are used and the polynomial order for
the pressure is one unit lower than that for the velocity. Note that, in the latter case, the estimate
for the pressure error is also optimal with respect to the approximation properties of the space Qh .
Finally, the choice c= �/h is now fully justified by the theory.

5. NUMERICAL RESULTS

In this section, we provide numerical assessment of the theoretical results derived above. We
consider the same analytical solution of the Stokes problem in the square domain �= (−1, 1)2

used in [1], i.e.

u=
[− exp(x)(y cos y + sin y)

exp(x)y sin y

]
, p= 2 exp(x) sin y, f= 0

In order to disambiguate the pressure, it was sufficient to remove one degree of freedom from the
matrix and then re-scale the solution so as to impose the zero average constraint. Even with such
a naive approach no degradation of the solution in the neighbourhood of the removed degree of
freedom was observed. The numerical results collected in Table I were obtained for c= 1/h f and
� f = 4.1 using uniform rectangular meshes. The resulting linear system was solved by means of
the direct solver in PETSc (see [20]).
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Table I. Convergence results for k = 1, 2, 3.

‖eu‖0,� ‖ep‖0,� ‖∇h ·uh‖0,�
k Grid size Error Order Error Order Error Order

1 32× 32 1.00e − 3 2.00 7.87e − 3 1.09 9.36e − 4 1.44
64× 64 2.52e − 4 1.99 3.76e − 3 1.07 3.65e − 4 1.36

128× 128 6.36e − 5 1.99 1.82e − 3 1.04 1.39e − 4 1.39

2 16× 16 9.33e − 5 3.01 4.34e − 4 1.91 9.63e − 4 1.95
32× 32 1.16e − 5 3.01 1.25e − 4 1.79 2.48e − 4 1.96
64× 64 1.45e − 6 3.00 3.41e − 5 1.88 6.29e − 5 1.98

3 8× 8 2.89e − 5 4.00 1.18e − 4 2.97 2.99e − 4 3.05
16× 16 1.79e − 6 4.02 1.56e − 5 2.91 3.65e − 5 3.03
32× 32 1.11e − 7 4.01 2.12e − 6 2.88 4.56e − 6 3.00

The experiments show that the error estimates are sharp, and the expected orders of convergence
are observed for both the pressure and the velocity. The norm of the divergence can be estimated
by simply noticing that it is smaller or equal than the H1-seminorm of the velocity and, hence, of
the triple norm. One would therefore expect to observe convergence with order k. This theoretical
estimate, however, seems over-pessimistic for P1 elements. The extent to which the zero-divergence
constraint is satisfied inside every element is measured by

‖∇h ·uh‖0,� def=
( ∑
K∈Th

‖∇h ·uh‖20,K
)1/2

6. CONCLUSION

In this work, we have analysed a new DG approximation of the Stokes problem first presented in
[7], where only numerical assessment was provided. Following the approach originally proposed
in [9], the viscous and inviscid fluxes were treated separately. The former were computed using the
well-established BRMPS method, while for the latter a local artificial compressibility perturbation
of the problem was introduced at the elementary interface level. The inviscid fluxes were then
computed by solving a suitable Riemann problem. The analysis was carried out by extending the
techniques for the elliptic case presented in [11]. Unlike in [1], the problem was considered in its
primal formulation. Optimal error estimates were found for both the velocity and the pressure and
the results were assessed by thorough numerical testing.
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